Гликированный гемоглобин реферат

Гликозилированный гемоглобин – норма


Содержание:

1. Что такое гликозилированный гемоглобин? Для чего определяют?

2. Всё об анализе крови на HbА1с – норма, как сдавать. Нормативы для пациентов с диабетом.

Оглавление:

3. Тест на HbА1с – расшифровка.

Что такое гликозилированный гемоглобин (HbА1c)

Гликозилировнный гемоглобин (glycosylated hemoglobin) – это гемоглобин эритроцитов, необратимо связанный с глюкозой.

Обозначение в анализах:


  • Гликированный гемоглобин (glycated hemoglobin)
  • Гликогемоглобин (glycohemoglobin)
  • Гемоглобин А1с (hemoglobin A1c )

Гемоглобин-Альфа (HbА), содержащийся в эритроцитах человека, при контакте с глюкозой крови спонтанно «приклеивает» её к себе – гликозилируется.

Чем выше уровень сахара в крови, тем больше гликозилированного гемоглобина (HbА1) успевает образоваться в эритроците за его 120-дневную жизнь. В кровотоке одновременно циркулируют эритроциты разных «возрастов», поэтому за усреднённый период гликирования берётсясуток.

Из трёх фракций гликозилированного гемоглобина — HbА1а, HbА1b, HbА1с – последняя наиболее стабильна. Её количество и определяют в клинико-диагностических лабораториях.

HbА1с — это биохимический показатель крови, отражающий средний уровень гликемии (количества глюкозы в крови) за последние 1-3 месяца.

Анализ крови на HbА1c – норма, как сдавать.

Тест на гликозилированный гемоглобин – надёжный долгосрочный способ контроля уровня сахара в крови.

  • Мониторинг гликемии у больных сахарным диабетом.

Тестирование на HbА1с позволяет узнать, насколько успешно проводится лечение диабета – следует ли его менять.

  • Диагностика ранних стадий сахарного диабета (в дополнении к тесту на толерантность к глюкозе).
  • Диагностика «диабета беременных».

Никакой специальной подготовки для сдачи крови на HbА1с не требуется.



Кровь из вены (2,5-3,0 мл) пациент может сдать в любое время суток, в независимости от приёма пищи, физических/эмоциональных нагрузок, принимаемых лекарств.

Причины ложных результатов:

При сильных кровотечениях или состояниях, влияющих на процессы кроветворения и продолжительность жизни эритроцитов (серповидно-клеточная, гемолитическая, железодефицитная анемия и др.) результаты анализа на HbА1с могут ложно занижаться.

Норма гликозилированного гемоглобина для женщин и мужчин одинакова.

Норма

Требования к величинам HbА1c для больных сахарным диабетом



Источник: http://aptekins.ru/zdorovie/glikozilirovannyi-gemoglobin-norma

Клиническое значение определения гликированного гемоглобина

Клиническое значение определения гликированного гемоглобина

Глики?рованный гемоглобин, или гликогемоглобин (кратко обозначается: гемоглобин A1c, HbA1c) — биохимический показатель крови, отражающий среднее содержание сахара в крови за длительный период (до трёх месяцев), в отличие от измерения глюкозы крови, которое дает представление об уровне глюкозы крови только на момент исследования.

Гликированный гемоглобин отражает процент гемоглобина крови, необратимо соединённый с молекулами глюкозы. Гликированный гемоглобин образуется в результате реакции Майяра между гемоглобином и глюкозой крови. Повышение уровня глюкозы крови при сахарном диабете значительно ускоряет данную реакцию, что приводит к повышению уровня гликированного гемоглобина в крови. Время жизни красных кровяных телец (эритроцитов), которые содержат гемоглобин, составляет в среднем 120—125 суток. Именно поэтому уровень гликированного гемоглобина отражает средний уровень гликемии на протяжении примерно трёх месяцев.

Гликированный гемоглобин — это интегральный показатель гликемии за три месяца. Чем выше уровень гликированного гемоглобина, тем выше была гликемия за последние три месяца и, соответственно, больше риск развития осложнений сахарного диабета.



Исследование гликированного гемоглобина используется обычно для оценки качества лечения диабета за три предшествующих месяца. При высоком уровне гликированного гемоглобина следует провести коррекцию лечения (инсулинотерапия или таблетированные сахароснижающие препараты) и диетотерапии.

Нормальными считаются значения HbA1c от 4 % до 5,9 %. При диабете уровень HbA1c повышается, что свидетельствует о большем риске развития ретинопатии, нефропатии и других осложнений. Международная федерация диабета рекомендует удерживать уровень HbA1c ниже 6,5 %. Значение HbA1c, превышающее 8 %, означает, что диабет контролируется неудовлетворительно и следует изменить терапию.

Подготовка к исследованию

Гликозилированный или гликированный гемоглобин (HbA1c) — показатель, отражающий содержание глюкозы в крови за последниемесяца. Основные показания к применению: контроль течения сахарного диабета (1 раз в 3 месяца), контроль эффективности лечения сахарного диабета, показатель риска развития осложнений сахарного диабета.

Гликозилированный или гликированныйгемоглобин (НbА1с) — соединение гемоглобина А и глюкозы, образующееся в организме неферментативным путем. Приблизительно 5-8% гемоглобина в эритроцитах устойчиво связываются с молекулой глюкозы. Процесс присоединения глюкозы к молекуле гемоглобина — нормальный процесс, но в течение жизни эритроцита при повышенном продолжительном содержании глюкозы в крови этот процент увеличивается. Такие молекулы гемоглобина называют гликозилированными. Существует несколько видов гликозилированных гемоглобинов (HbAIa, HbAIb, HbAIc). Считается, что наибольшей клинической значимостью обладает гемоглобин — HbA1c (за счет его количественного преобладания). Концентрация гликозилированного гемоглобина зависит от концентрации глюкозы в крови. Учитывая, что срок жизни эритроцита составляет в среднем 120 дней, то определение содержания HbA1с будет отражать среднее содержание глюкозы в сыворотке крови в течениемесяцев до проведения исследования.

Помимо гемоглобина процессу гликирования подвержены: альбумин, коллаген, белки хрусталика глаза, трансферрин, белки мембраны эритроцитов и многие другие белки и ферменты, что приводит к нарушению их функций и отягощению течения сахарного диабета.



Определение гликозилированного гемоглобина признано Всемирной организацией здравоохранения необходимым для контроля течения сахарного диабета 1 раз в 3 месяца.

Определение НbА1с позволяет осуществлять наблюдение за содержанием глюкозы между визитами к врачу. Чем выше содержание HbA1с в сыворотке крови пациента, тем хуже контролировалась концентрация глюкозы.

Нормализация уровня HbA1c в крови происходит на 4-6-й неделе после достижения нормального уровня глюкозы. При контроле лечения диабета рекомендуется поддерживать уровень гликированного гемоглобина менее 7% и пересматривать терапию при его содержании более 8% (по методу определения НbА1с с нормальными значениями в пределах 4-6%).

Гликированный гемоглобин используется как показатель риска развития осложнений сахарного диабета.

Значения могут различаться между лабораториями в зависимости от применяемого аналитического метода, поэтому контроль в динамике лучше проводить в одной лаборатории или, по крайней мере, тем же методом.

Результаты теста могут быть ложно изменены при любых состояниях, влияющих на средний срок жизни эритроцитов крови. Кровотечения или гемолиз вызывают ложное снижение результата НbА1с. Переливания крови также искажают результат. При железодефицитной анемии наблюдается ложное повышение НbА1с.

Подготовка к диагностике

  • Следует объяснить пациенту, что исследование позволит оценить, эффективность противодиабетической терапии.
  • Следует предупредить его, что для исследования необходимо взять пробу крови, и сообщить, кто и когда будет брать кровь из вены.
  • После пункции вены набирают кровь в пробирку с ЭДТА.
  • Место венепункции придавливают ватным шариком до остановки кровотечения.
  • При образовании гематомы в месте венепункции назначают согревающие компрессы.
  • Пациенту назначают повторное исследование через 6-8 недель.
  • В норме содержание гликозилированного гемоглобина составляет 4,0 — 5,2% от общего гемоглобина.

Факторы, влияющие на результат исследования

Неправильный забор крови — недостаточное перемешивание крови с находящимся в пробирке антикоагулянтом (ЭДТА).

  • Факторы, увеличивающие результаты
    • Карбамилированный гемоглобин (образовавшийся у пациентов с уремией).
    • Гидрохлортиазид.
    • Индапамид.
    • Морфин.
    • Пропранолол.
    • Факторы, вызывающие ложное повышение

Гемоглобин F (фетальный) и лабильные промежуточные продукты могут вызвать ложное повышение результатов.

Гликированный гемоглобин. Анализ на гликозилированный гемоглобин. Сдать анализ на повышение сахара в крови



Источник: http://medvedev.ru/articles/klinicheskoe-znachenie-opredeleniya-glikirovannogo-gemoglobina/

Гликированный гемоглобин

  • 1 Принцип измерения и интерпретация результатов
  • 2 Подготовка к исследованию Примечания

    Введение

    Глики́рованный гемоглобин, или гликогемоглобин (кратко обозначается: гемоглобин A1c, HbA1c) — биохимический показатель крови, отражающий среднее содержание сахара в крови за длительный период (до трёх месяцев), в отличие от измерения глюкозы крови, которое дает представление об уровне глюкозы крови только на момент исследования.

    Гликированный гемоглобин отражает процент гемоглобина крови, необратимо соединённый с молекулами глюкозы. Гликированный гемоглобин образуется в результате реакции Майяра между гемоглобином и глюкозой крови. Повышение уровня глюкозы крови при сахарном диабете значительно ускоряет данную реакцию, что приводит к повышению уровня гликированного гемоглобина в крови. Время жизни красных кровяных телец (эритроцитов), которые содержат гемоглобин, составляет в среднем 120—125 суток. Именно поэтому уровень гликированного гемоглобина отражает средний уровень гликемии на протяжении примерно трёх месяцев.

    Гликированный гемоглобин — это интегральный показатель гликемии за три месяца. Чем выше уровень гликированного гемоглобина, тем выше была гликемия за последние три месяца и, соответственно, больше риск развития осложнений сахарного диабета.

    Исследование гликированного гемоглобина используется обычно для оценки качества лечения диабета за три предшествующих месяца. При высоком уровне гликированного гемоглобина следует провести коррекцию лечения (инсулинотерапия или таблетированные сахароснижающие препараты) и диетотерапии.

    1. Принцип измерения и интерпретация результатов

    HbA1 (гемоглобин альфа-1) является наиболее распространённым типом гемоглобина — на его долю приходится 96-98 % всей массы этого белка в организме. Каждый эритроцит содержит около 270 миллионов молекул гемоглобина, которые в ходе медленной неферментативной реакции — гликирования — соединяются с глюкозой, содержащейся в плазме крови. Процесс гликирования необратим, и его скорость пропорциональна уровню гликемии. Гликированный гемоглобин обозначается как HbA1c. Результат анализа отражает уровень гликемии за срок от 90 до 120 дней (этот срок зависит от полупериода разрушения эритроцитов), но наибольшее влияние оказывают последние 30 дней перед взятием анализа — 50 % величины HbA1с обусловлено ими. [1]

    Нормальными считаются значения HbA1c от 4 % до 5,9 %. При диабете уровень HbA1c повышается, что свидетельствует о большем риске развития ретинопатии, нефропатии и других осложнений. Международная федерация диабета рекомендует удерживать уровень HbA1c ниже 6,5 %. Значение HbA1c, превышающее 8 %, означает, что диабет контролируется неудовлетворительно и следует изменить терапию.

    Интерпретация результатов затрудняется разницей в лабораторных технологиях и индивидуальными различиями пациентов — разброс значений HbA1c у двух людей с одинаковым средним сахаром крови может достигать 1 %.

    В приведенной ниже таблице показана связь между гликированным гемоглобином и средним сахаром крови.

    Источник: http://wreferat.baza-referat.ru/%D0%93%D0%BB%D0%B8%D0%BA%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%BD%D1%8B%D0%B9_%D0%B3%D0%B5%D0%BC%D0%BE%D0%B3%D0%BB%D0%BE%D0%B1%D0%B8%D0%BD

    Гликированный гемоглобин (HbA1c)

    Гликированный гемоглобин (HbA1c) — соединение гемоглобина с глюкозой, позволяющее оценивать уровень гликемии за 1 — 3 месяца, предшествующие исследованию.

    Ниже представлено соответствие уровня гликированного гемоглобина HbA1c уровню среднесуточного сахара крови.

    Гликированный гемоглобин отражает гипергликемию, имевшую место на протяжении периода жизни эритроцитов (до 120 суток). Эритроциты, циркулирующие в крови, имеют разный возраст. Обычно ориентируются на усреднённый срок — 60 суток.

    Источник: http://medpractik.ru/articles/glikirovannyj-gemoglobin-hba1c.html

    Анализ крови на гликозилированный гемоглобин (НbA1c)

    (анализ крови на гликированный гемоглобин)

    Анализы крови

    Общее описание

    Гемоглобин, как и другие белки, находясь в растворе глюкозы, присоединяет к своей белковой части (β-концевым валином в B-цепи молекулы HbА) молекулы глюкозы за счет химических (неферментных) связей. При повышенных концентрациях глюкозы в крови она вступает в неферментативное взаимодействие с белками плазмы с образованием шиффовых оснований, в том числе с Hb. Эта реакция необратима. Количество гликозилированного белка пропорционально концентрации глюкозы и длительности инкубации. Поэтому содержание гликозилированного гемоглобина (HbА1c) в эритроцитах человека является интегральным показателем углеводного обмена за предшествующиедней, что соответствует длительности жизни эритроцита в организме.

    Измерение концентрации HbA1c позволяет ретроспективно оценивать уровень гипергликемии при сахарном диабете. Гликозилированный Hb состоит из трх компонентов: HbA1а, HbA1b и HbA1c. Из них HbA1c обладает более высокой корреляцией со степенью выраженности гипергликемии у больных сахарным диабетом. Гликолизированный гемоглобин (HbA1c) используется как показатель риска развития осложнений сахарного диабета. В соответствии с рекомендациями Всемирной организации здравоохранения этот тест признан оптимальным и необходимым для контроля за качеством лечения диабета.

    Гликозилированный гемоглобин, наряду с показателями гликемии, является важнейшим параметром, используемым для оценки степени компенсации углеводного обмена у больных сахарным диабетом 1-го и 2-го типа. Исследование содержания HbА1c целесообразно производить в динамике с интервалами 3-4 месяца для оценки эффективности лечебных мероприятий у больных сахарным диабетом. Содержание HbА1c не следует использовать для контроля за состоянием углеводного обмена у больных с уремией, находящихся на гемодиализе, муковисцидозом, гемолитической анемией, а также при заболеваниях, сопровождающихся нарушениями синтеза мембраны эритроцитов (микросфероцитоз, талассемия). Тест на гликозилированный гемоглобин дает значительно более показательную информацию о гликемическом профиле пациента, нежели значение сахара в крови натощак.

    Результаты исследования оценивают следующим образом: 4−6% — хорошая компенсация сахарного диабета в последние 1−1,5 месяца, 6,1−7,5% — удовлетворительная компенсация, более 7,5% — неудовлетворительная компенсация. Для оценки эффективности лечения целесообразно повторить исследование через 2−3 месяца.

    Методами определения гликозилированного гемоглобина являются высокоэффективная жидкостная хроматография, жидкостная ионообменная хроматография, аффинная хроматография, иммунотурбидиметрия, электрофорез. Но наиболее точными являются хроматографические исследования. У практически здоровых лиц содержание HbА1c составляет 4-6% (нормальные показатели могут варьировать при использовании различных методов определения HbА1c). Материал пробы является цельная кровь, которая на анализ берется из вены в количестве 5 мл. Каких-либо особых рекомендаций перед тем, как сдать анализ крови на гликозилированный гемоглобин выполнять не требуется.

    Источник: http://online-diagnos.ru/analiz/analiz-krovi-na-glikozilirovanniy-gemoglobin-nba1c

    Гликозилированный гемоглобин

    Анализ на уровень гликозилированного гемоглобина – это очень важный и точный анализ крови при подозрении или проверке на сахарный диабет. Он имеет массу преимуществ по сравнению со стандартным двухчасовым анализом на глюкозу и как следствие стоит дороже. Однако, его достоинства: более точный результат, удобство проведения, быстрота и надежность, позволяют стерпеть такой недостаток, как стоимость.

    В этой статье вы найдете ответы на многие основные вопросы, касающиеся одного из анализов крови на содержание сахара. Мы рассмотрим, что такое анализ крови на гликозилированный гемоглобин, чем он отличается от прочих анализов на содержание сахара в крови, что

    показывает, как его сдавать и анализировать результаты.

    Что показывает гликозилированный гемоглобин?

    Гликолизированный гемоглобин еще часто называют гликированным. По сути, результат анализа показывает в процентном содержании, какая часть гемоглобина связана с глюкозой.

    Гемоглобин – это белок в крови, роль которого заключается в насыщении всех клеток организма кислородом. Если гликозилированный гемоглобин повышен, эта задача плохо выполняется, и имеется большой риск заболевания диабетом.

    Так как результат анализа предоставляется в виде процентов, норма для взрослых и детей одна и та же. Этот анализ нельзя обмануть недельной диетой, что весьма распространено среди подростков. Все съеденное за три месяца находит отражение в норме гликозилированного гемоглобина в крови.

    В анализе этот результат чаще всего обозначен как HbA1C, но такая форма записи, как «гемоглобин A1C» тоже приемлема, в анализе может встретиться и «гликозилированный гемоглобин hba1c». Иногда слово гемоглобин и вовсе опускают.

    Существуют специальные таблицы, по которым можно сопоставить процентный результат анализа с содержанием глюкозы. Так, если анализ показывает 4%, это означает, что 3,8 ммоль/л глюкозы в среднем содержалось в крови за последние три месяца. Соответствие HbA1C и содержания глюкозы в ммоль/л приведем ниже:

    Норма гликозилированного гемоглобина

    Разобравшись с тем, какое количество глюкозы соответствует гемоглобину, с ней связанному, рассмотрим, а какое значение оно должно принимать у здорового человека или стабильно лечащегося диабетика.

    1. Если процентное содержание гемоглобина, связанного с глюкозой менее 5,7, это означает, что у вас стабильное здоровое состояние, обмен углеводов осуществляется правильно, риска диабета не наблюдается.
    2. Если гликозилированный гемоглобин повышен незначительно: 5,7 – 6,0%, стоит перейти на диету с пониженным содержанием углеводов. Это необходимо сделать для профилактики диабета. И хотя риск его получения остается по-прежнему небольшим, стоит предостеречься.
    3. При результате в 6,0-6,4% переход диету с низким содержанием углеводов и здоровый образ жизни крайне необходим. Откладывать больше нельзя. Риск появления сахарного диабета очень высок.
    4. Если после определения гликозилированного гемоглобина, его процентное содержание составило более 6,5, врач может предварительно поставить диагноз о сахарном диабете. Для его уточнения, конечно, еще нужны дополнительные процедуры.
    5. Норму гликозилированного гемоглобина для диабетиков можно считать различной по различным источником. Вообще, говорят, что при содержании HbA1C не превышающем 7%, диабет скомпенсирован и состояние стабильно. Но некоторые врачи, например, такие как доктор Бернстайн, уверяют, что диабетики должны стремиться к показателю от 4,2 до 4,6%. Этот же интервал характерен для стройных здоровых людей, к нему и должны тянуться диабетики. Однако в погоне за компенсированием диабета можно не заметить риск возникновения гипогликемии. Для того, чтобы этого избежать, необходимо оптимизировать свою диету и научиться выдерживать баланс между сахаром и гипогликемией.

    к оглавлению ↑

    Как сдавать анализ на гликозилированный гемоглобин?

    Так как сдавать анализ гликозилированный гемоглобин намного проще и быстрее, чем на толерантность к глюкозе, многие пациенты предпочитают сэкономить время и силы. Найти время для такого анализа крови можно в любое время дня. Преимущества гликозилирования:

    • Тест необязательно сдавать на голодный желудок с утра. Он не чувствителен к только что принятой пище. Его можно сдать даже после физической нагрузки, например, тренировки в зале, после рабочего дня или в любое другое удобное время суток.
    • Он не реагирует на временные отклонения такие, как, например, простуда, эмоциональное напряжение или сезонная инфекция. Прием препаратов против этих заболеваний также не улавливается анализом. Только лекарства от диабета влияют на результаты
    • Сдача крови на сахар, которая проводится на голодный желудок, является менее точной, чем на гликозилированный гемоглобин.
    • Процентное содержание определенного гемоглобина дает основания полагать, что норма у женщин гликозилированного гемоглобина является такой же, как и у мужчин.
    • Дает развернутую картину диеты (или ее отсутствия) у пациента за последние три месяца.
    • Сдается быстро, легко как для пациента, так и для врача.

    к оглавлению ↑

    Недостатки анализа

    Несмотря на то, что анализ имеет ряд определенных преимуществ, он, конечно, не идеален.

    1. По сравнению с обычным анализом на глюкозу, рассматриваемый стоит дороже.
    2. Не подходит для людей, страдающих анемией и гемоглобинопатией.
    3. Распространен только в хороших клиниках, вследствие чего доступность по отдаленным регионам уменьшается.
    4. Неудачный выбор для будущих мамочек, находящихся в положении: гликозилированный гемоглобин у беременных отражает повышенный сахар только спустя 3 месяца, а за этот срок можно было бы принять меры по устранению отклонения от нормы. К тому же, сахар в крови у матери начинает расти только с шестого месяца, так что гликозилированный гемоглобин отразит это только к сроку родов.
    5. На причины, почему повышен гликозилированный гемоглобин, может влиять увеличенное количество гормонов щитовидки.

    Здоровым людям следует проходить тест на HbA1C по крайней мере один раз в три года, у диабетиков этот срок сокращается до трех месяцев.

    Источник: http://vseproanalizy.ru/glikozilirovannyiy-gemoglobin.html

    Реферат: Гемоглобин, его функции и физиология

    Просмотров: 1463 Комментариев: 4 Оценило: 1 человек Средний балл: 4 Оценка: неизвестно Скачать

    Гемоглобин — сложный белок, хромопротеид, дыхательный пигмент крови человека, позвоночных и некоторых беспозвоночных животных. Основная функция гемоглобина — перенос кислорода от органов дыхания к тканям.

    Химически гемоглобин относится к группе хромопротеидов. Молекула гемоглобина состоит из белковой части — глобина и простетичной группы небелковой природы — гема, в состав которого входит железо. В одной молекуле гемоглобина содержится 4 простетических группы. В 100 мл крови здорового человека содержится 13 – 16 г гемоглобина. Железо, которое содержится в геме, способно образовывать с молекулами кислорода распадающееся соединение при прохождении эритроцита через капилляры легких, а при прохождении через сосуды других органов — отдавать кислород и связываться с углекислотой, которую гем затем отдает, когда эритроцит вновь попадает в капилляры легких. Кровь, протекающая по артериям, насыщена кислородом, имеет ярко-алый цвет; после поглощения кислорода тканями и связывания гемоглобина с углекислотой кровь приобретает темно-красный цвет (эта кровь протекает по венам). Помимо гемоглобина крови, у ряда животных в ритмически работающих мышцах с интенсивным обменном (мышца сердца) имеется мышечный гемоглобин (миоглобин), близкий по своему составу и свойствам к гемоглобину крови.

    Альфа-полипептидная цепь заканчивается комбинацией аминокислот валина-лейцина, а бета- полипептидная цепь — комбинацией валина-гистидина-лейцина. Альфа- и бета-полипептидные цепи в гемоглобиновой молекуле не размещены линейно, это первичная структура. По причине существования интрамолекулярных сил полипептидные цепи скручиваются в форме типичной для белков альфа-геликсовой спирали (вторичная структура). Сама альфа-геликсовая спираль на каждую альфа- и бета-полипептидную цепь огибается пространственно, образуя сплетения овоидной формы (третичная структура). Отдельные части альфа-геликсовых спиралей полипептидных цепей отмечают латинскими буквами от А до Н. Все четыре третично изогнутые альфа- и бета-полипептидные цепи располагаются пространственно в определенном соотношении — кватернерная структура. Они связаны между собой не настоящими химическими связями, а межмолекулярными силами.

    Сведберговой единицей называется комплекс, составленный из одного гема и одной альфа-, бета-полипептидной цепи. Явно гемоглобиновая молекула состоит из четырех сведберговых единиц. Молекулярный вес гемоглобина равен 64458, т. е. на один атом железа полагается по 16115.

    Кроме координационной связи, существующей между полипептидными цепями глобина, Fe++ атом гема располагает еще тремя координационными связями, две из которых соединены двумя азотными атомами порфиринового кольца, а третья, в среде с низким парциальным давлением кислорода, связана с одной молекулой воды. В среде с высоким парциальным давлением кислорода (артериальная кровь), третья координационная связь соединена с одной молекулой кислорода, причем получается соединение — оксигемоглобин. Путем непрерывного превращения оксигемоглобина в редуцированный гемоглобин и обратно осуществляется перенос кислорода из легких к тканям. Особенно значительным отличием гемоглобина от миоглобина является кривая насыщения кислородом, которая имеет сигмоидную форму. Значит, возможность гемоглобина связывать кислород зависит от того, заключаются ли в данном тетрамере другие молекулы кислорода. Если содержатся, то последующие молекулы кислорода присоединяются легче. Таким образом, для гемоглобина свойственна кинетика кооперативного связывания, благодаря которой он объединяет максимальное количество кислорода в легких и отдает максимальное количество кислорода при тех парциальных давлениях кислорода, которые имеют место в периферических тканях.

    Величина Р50 — значение парциального давления кислорода — характеризует сродство гемоглобинов к кислороду. Р50 у разных организмов существенно различается, но во всех случаях оно превышает значение парциального давления кислорода в периферических тканях рассматриваемого организма.

    Это показывает фетальный гемоглобин человека (НВF). Для HbA Р50 26 мм. рт. ст., а для HbF Р50 20 мм. рт. ст. Благодаря этой разнице гемоглобин F отбирает кислород у HbA, находящегося в плацентарной крови. Однако после рождения ребенка HbF утрачивает свою функцию; обладая более высоким сродством к кислороду, он высвобождает меньшее его количество в тканях.

    У гемоглобина есть еще одна немаловажная функция: он ускоряет транспорт углекислого газа от тканей к легким. Гемоглобин связывает углекислый газ сразу после высвобождения кислорода; примерно 15% углекислого газа, присутствующего в крови, переносится молекулами гемоглобина. Находящаяся в эритроцитах карбоангидраза катализирует превращение поступающего из тканей углекислого газа в угольную кислоту. Угольная кислота быстро диссоциирует на бикарбонат-ион и протон, причем равновесие сдвинуто в сторону диссоциации. Для предотвращения опасного повышения кислотности крови должна существовать буферная система, способная поглощать избыток протонов. Гемоглобин связывает два протона на каждые четыре освободившиеся молекулы кислорода, определяя буферную емкость крови.

    В легких идет противоположный процесс: присоединение кислорода к дезоксигемоглобину сопровождается высвобождением протонов, которые связываются с бикарбонат-ионами, переводя их в угольную кислоту. Далее эффективно действующая карбоангидраза катализирует превращение угольной кислоты в углекислый газ, выдыхаемый из легких. Следовательно, связывание кислорода тесно сопряжено с выдыханием углекислого газа. Это явление называется эффектом Бора.

    Этот эффект — свойство тетрамерного гемоглобина, которое определяется гем-гемовым взаимодействием, лежащим в основе кооперативных эффектов. Протоны, ответственные за эффект Бора, высвобождаются в итоге разрушения солевых мостиков, которым сопровождается связывание кислорода с Т-структурой; они отсоединяются от атомов азота остатков гистидина (146) в бета-цепях. Эти протоны сдвигают соотношение в сторону образования угольной кислоты, которая расщепляется карбоангидразой с образованием углекислого газа. Напротив, при высвобождении кислорода вновь складывается Т-структура с присущими ей солевыми мостиками, при создании которых совершается присоединение протонов к остаткам гистидина в бета-цепях. Таким образом, в периферических тканях протоны благоприятствуют образованию солевых мостиков. Образование солевых мостиков вызывает освобождение кислорода из оксигенированной R-формы гемоглобина.

    Следовательно, увеличение концентрации протонов содействует освобождению кислорода, а повышение концентрации кислорода стимулирует высвобождение протонов. Первый результат выражается в сдвиге кривой диссоциации кислорода вправо при росте концентрации ионов водорода (протонов).

    Обычная концентрация гемоглобина у взрослого человека составляет от 80 до 115%, за среднюю величину принимают 100%. Типичные величины у мужчин приблизительно на 10% выше, чем у женщин. У ребенка же нормальная концентрация гемоглобина существенно отличается от норм взрослого человека.

    В наше время существует немало способов нахождения концентрации гемоглобина. Сюда можно отнести колориметрические методы, при которых гемоглобин колориметрируют как оксигемоглобин или редуцированный гемоглобин. К этой группе можно причислить и первый метод для определения гемоглобина, предложенный Велькером в 1854 году и модифицированный Тальквистом, суть которого заключалась в том, что цвет капли крови на фильтровальной бумаге сравнивают с серией цветных бумажных стандартов. Другой исследователь, основываясь на превращении гемоглобина в солянокислый гематин и связанных с этим изменений в электрической проводимости, предложил электронный метод определения концентрации гемоглобина. Также существуют газометрические методы. При этом гемоглобин насыщают газом (например, кислородом), окисью углерода (СО). По доле поглощенного газа определяют количество гемоглобина. Долю кислорода находят прибором Ван-Слайка, прибором Баркрофта или каким нибудь другим аппаратом для определения кислорода. Имеются методы, основанные на определении железа в гемоглобиновой молекуле. Так как гемоглобиновая молекула содержит точно определенное количество железа (0,0347%), по его количеству устанавливается и количество гемоглобина.

    Существует такое понятие, как метгемоглобин. Метгемоглобином называется производное гемоглобина, в котором двухвалентный атом железа переходит в трехвалентный. В эритроцитах в ходе обмена всегда формируются известные количества метгемоглобина, который восстанавливается обратно в гемоглобин под влиянием фермента метгемоглобинредуктазы так, что в цельной крови здорового человека метгемоглобин не превышает 2% от общего содержания гемоглобина (0,03 – 0,3%).

    Химическая структура сульфогемоглобина не выяснена. Вероятно, две виниловые группы гемоглобина соединяются, посредством SО2-мостиков, с соседними метиновыми связями. В нормальном состоянии сульфогемоглобина в крови нет. Он появляется при отравлениях соединениями сурьмы, фенацитином, бромом, сульфонамидами, нитратами (колодезная вода), серными соединениями и пр.

    Определение сульфогемоглобина в крови можно произвести спектроскопически. Сульфогемоглобиновый спектр не изменяется от прибавления сульфида аммония, но исчезает от прибавления Na2S2О4 и 2 мл 10% едкого натра, или нескольких капель 3% перекиси водорода.

    Типы гемоглобина. Недавно еще считалось, что гемоглобин взрослого человека представляет собой единственное соединение. Известно было только то, что в эмбриональной жизни имеется особенный тип гемоглобина, называемый HbF, в 155 раз более устойчивый к n/12 натриевой щелочи, чем нормальный гемоглобин. В последнее время, благодаря работам Полинга, его сотрудников и др., выяснилось, что гемоглобин взрослого человека и при нормальных, и при патологических состояниях не представляет собой гомогенного химического соединения. Открыто было много нормальных и патологических типов гемоглобина, которые представили в новом свете обмен гемоглобина и указали пути для исследования патогенеза некоторых анемий. Установлено было, что при некоторых заболеваниях наблюдаются особые типы гемоглобина, характерные для данной анемии. Типы гемоглобина имеют большое значение не только для диагноза, но и переносят вопрос о патогенезе анемии из чисто морфологической области в биохимическую. Анемии, вызванные появлением патологического типа гемоглобина, называются гемоглобинопатиями или гемоглобинозами.

    Выяснилось, что у человека имеются три основных типа нормального гемоглобина: эмбриональный — U, фетальный — F и гемоглобин взрослого человека — А. HbU (назван по начальной букве слова uterus) встречается в эмбрионе между 7 и 12 неделями жизни, затем он исчезает и появляется фетальный гемоглобин, который после третьего месяца является основным гемоглобином плода. Вслед за этим появляется постепенно обыкновенный гемоглобин взрослого человека, называемый HbA, по начальной букве английского слова "adult". Количество фетального гемоглобина постепенно уменьшается, так что в момент рождения 80% гемоглобина представляет собой HbA и только 20% — HbF. После рождения фетальный гемоглобин продолжает убывать и к 2 – 3 году жизни составляет всего 1 – 2%. То же количество фетального гемоглобина и у взрослого. Количество HbF, превышающее 2%, считается патологическим для взрослого человека и для детей старше 3 лет.

    Кроме нормальных типов гемоглобина, в настоящее время известно свыше 50 его патологических вариантов. Они сначала были названы латинскими буквами. Буква В в обозначениях типов гемоглобина отсутствует, т. к. ею обозначен первоначально HbS.

    Вскоре выяснилось, что букв азбуки не хватит для обозначения всех патологических типов гемоглобина. Поэтому стали применять для этого имена пациентов, больниц, лабораторий, названия мест и округов. Самой удобной является номенклатура по структурной формуле.

    Как нормальные, так и патологические типы гемоглобина различаются не по структуре протопорфиринового кольца, а по построению глобина. Разница может заключаться в изменении целых пар полипептидных цепей в гемоглобиновой молекуле.

    Такая возможность встречается у гемоглобинов H, F, Бартс, А2 и U. Вместо нормальной структуры гемоглобина А — альфа-альфа/бета-бета (альфа 2/бета 2), гемоглобин Н имеет структуру бета-бета-бета-бета (бета 4), что значит, что обе альфа-полипептидные цепи замещены новыми — бета-полипептидными цепями. У гемоглобинов F, Бартс и А2 появляются две новые цепи, обозначаемые гамма и дельта, а у гемоглобина U — новая цепь, обозначаемая ипсилон. Структура HbF — альфа-альфа/гамма-гамма (альфа 2/гамма 2), структура гемоглобина Бартс — гамма-гамма-гамма-гамма (гамма 4), структура HbА2 — альфа-альфа/дельта-дельта (альфа 2/гамма 2), структура гемоглобина U — альфа-альфа/ипсилон-ипсилон (альфа 2/ипсилон 2).

    Патологические гемоглобины, которые состоят из четырех одинаковых полипептидных цепей, обозначают тетрамерами. Тетрамеры альфа и дельта до сих пор in vivo не наблюдались.

    Существует и другая возможность, которая встречается у большинства типов гемоглобина. Так, например, единственная разница между HbS и HbA состоит в том, что на 6-ом месте в бета полипептидной цепи вместо глутамина находится валин, единственная разница между HbI и HbA в том, что на 16-ом месте в альфа-полипептидной цепи лизин замещен аспарагиновой кислотой.

    Когда аномалия состоит в замещении аминокислоты в альфа-полипептидной цепи, то говорят об альфа-аномалии, когда состоит в бета-полипептидной цепи — о бета-цепной аномалии, когда в гамма-полипептидной цепи — о гамма-цепной аномалии (патологические варианты HbF), когда в дельта-цепи — о дельта-цепной аномалии (патологические варианты HbA2).

    При изучении гемоглобиновых типов имеет большое значение вопрос о структуре глобинов. С одной стороны, структура является самым верным способом отдифференцирования отдельных типов гемоглобина один от другого, с другой стороны — создается возможность для составления строго научной номенклатуры последних. Методы дифференцировки видов гемоглобина

    Для разграничения отдельных типов человеческого гемоглобина пользуются электрофорезом на блоке крахмала, на крахмальном геле, на геле агара, на целлюлозно-ацетатных листах, на акриламидном геле, на карбоксиметилцеллюлозном геле, электрофорезом при высоком напряжении тока.

    Вторым по значению методом, которым пользуются в настоящее время для дифференциации отдельных видов гемоглобина, является хроматография.

    Особенно хорошие результаты получается при употреблении в качестве адсорбирующего вещества ионообменной смолы амберлита и ионообменного декстранового геля.

    Для разграничения некоторых видов гемоглобина пользуются также их растворимостью в некоторых растворителях.

    Наиболее известным тестом этой группы является проба Итано для доказательства наличия HbS. При этой пробе редуцированный HbS осаждается в 24 m буфере, в противоположность другим типам гемоглобина. Проба эта имеет особенное значение для дифференцирования HbS и HbD, потому что HbS и HbD обладают одинаковой электрофоретической и хроматографической подвижностью.

    Для отличия HbA от HbF пользуются, как было подчеркнуто выше, устойчивостью при денатурации растворами натриевой щелочи. Это известный в истории метод, которым Кербер в 1886 году дифференцировал HbA и HbF.

    Гемоглобины группы F отличается от других гемоглобиновых типов и по своей характерной триптофановой полосе при 289,8 нм ультрафиолетового спектра. Гемоглобины, обладающие группой М, не имеют абсорбционной полосы при длине волны 630 нм, но зато показывают увеличенную абсорбцию при 600 нм.

    "Отпечатковый метод”. Дело касается важнейшего метода установления "первичной структуры" гемоглобина при различных гемоглобиновых типах. Исследуемый гемоглобин гидролизуют трипсином, при этом полипептидные цепи глобиновой молекулы распадаются на большое число пептидов. Пептидную смесь подвергают электрохроматографии на бумаге, т. е. в одном направлении проводится электрофоретическое, в другом — хроматографическое разделение. Получаются характерные для отдельных типов гемоглобинов электрохроматограммы, по которым их можно точно различить. Определение аминокислотного состава отдельных пептидов дает возможность выявления первичной структуры глобина соответствующего гемоглобинового типа. Проводя аналогию с соответствующей по сложности и точности криминалистической техникой для изучения отпечатков пальцев рук, он был назван "пальцеотпечатковым" ("fingerprint") методом.

    Так называемым "рекомбинационным" или "гибридизационным" методом можно воспользоваться для установления состава полипептидных цепей в каком-нибудь гемоглобиновом типе. Если смешать известный и неизвестный гемоглобин при рН 4,3, они диссоциируют полумолекулами, состоящими из соответствующих пар полипептидных цепей. Полипептидные пары снова комбинируются в целые гемоглобиновые молекулы после нейтрализации раствора, причем могут получиться и новые "гибридные" гемоглобиновые молекулы. Их идентифицирование электрофоретическим способом или хроматографией позволит сделать заключение о полипептидной структуре неизвестного гемоглобинового типа. Этот метод также предназначен преимущественно для научных исследовательских целей.

    Существуют также способы цитологического определения типа гемоглобина в эритроцитах на мазке крови. Присутствие HbF в эритроцитах можно обосновать путем обработки кровяного мазка лимоннокислой буферной смесью с рН 3,2 – 3,6. При этих условиях HbA извлекается, и эритроциты, в которых он преобладал, остаются только в виде эритроцитных теней, тогда как HbF сохраняется, а эритроциты, содержащие преимущественно этот тип гемоглобина, сохраняют свое содержание.

    Помимо всех этих методов при дифференциации некоторых типов гемоглобина пользуются также разницей в кристаллическом строении, изоэлектрической точке и т. д.

    Рассмотрим гемоглобин S, в котором остаток Glu А2 бета замещен на Val.

    Он располагается на поверхности молекулы гемоглобина и контактирует в водой, и замещение полярного остатка Glu на неполярный Val ведет к появлению на поверхности бета-субъеденицы "липкого участка". Этот липкий участок присутствует как в оксигенированном, так и в дезоксигенированном гемоглобине S, но в гемоглобине А отсутствует.

    Существует комплементарный участок на поверхности дезоксигенированного гемоглобина, который способен крепко соединяться с липким участком бета-субъединицы, тогда как в оксигенированном гемоглобине этот участок маскируется другими группами. Когда гемоглобин S переходит в дезоксигенированное состояние, его липкий участок связывается с комплементарным участком на другой молекуле дезоксигенированного гемоглобина, тем самым совершается полимеризация дезоксигемоглобина S и его осаждение в виде длинных волокон.

    Волокна дезоксигемоглобина S механически деформируют эритроцит, придавая ему серповидную форму, что приводит к лизису клеток и множеству вторичных клинических проявлений.

    Следовательно, если бы можно было поддерживать гемоглобин S в оксигенированном состоянии или хотя бы свести к минимуму концентрацию дезоксигенированного гемоглобина S, то удалось бы предотвратить полимеризацию дезоксигенированного гемоглобина S и формирование "серповидных" клеток. Полимеризации подвержена Т-форма гемоглобина S. При серповидноклеточной анемии: гемоглобин S в ферри-состоянии (метгемоглобин S) не подвержен полимеризации, поскольку он стабилизирован в R-форме.

    В дезоксигемоглобине А тоже есть рецепторный участок, способный взаимодействовать с липким участком оксигенированного или дезоксигенированного гемоглобина S, но присоединения "липкого" гемоглобина S к дезоксигемоглобину А мало для создания полимера, так как сам дезоксигемоглобин А липкого участка не заключает в себе и не может объединять следующую молекулу гемоглобина.

    Значит, связывание дезоксигемоглобина А с R- или Т-формой гемоглобина S перекрывает полимеризацию.

    Спиральные фибрилярные структуры формируются в результате полимеризации дезоксигемоглобина S. При этом каждая молекула гемоглобина контактирует с четырьмя соседними молекулами. Создание подобных трубчатых волокон ответственно за механические нарушения в содержащем их эритроците.

    Существует еще одна группа патологий — талассемия, которые связанны с аномалиями гемоглобина. В их характеристику входит сниженная скорость синтеза альфа-цепей гемоглобина (альфа-талассемия) или бета-цепей (бета-талассемия). Это приводит к анемии, которая может принимать очень тяжелую форму.

    В наше время проводится много исследований, которые позволяют выяснить молекулярные приспособления, отвечающие за развитие талассемии.Гемоглобин — сложный белок в составе эритроцитов, состоящий из 2х частей: белка (глобин) и соединения железа (гема). Именно атомы железа (гема) делает кровь красной.

    Гемоглобин участвует в процессе транспорта кислорода и углекислого газа между легкими и клетками других органов, поддерживает рН крови. При недостатке гемоглобина в крови затрудняется перенос кислорода гемоглобином. В результате клетки не получают достаточно кислорода и в них нарушается обмен веществ и функции.

    Формы гемоглобина. При присоединении к белку гемоглобина (глобину) глюкозы, образуется гликозилированный (гликированный) гемоглобин.

    Рост уровня гликолизированного гемоглобина происходит при переизбытке глюкозы в крови, возникающем при сахарном диабете.

    В соответствии с рекомендациями Всемирной Организации Здравоохранения (ВОЗ) анализ на гликозилированный гемоглобин — самый эффективный и необходимый метод в диагностике сахарного диабета. Больным сахарным диабетом рекомендуется сдавать биохимический анализ крови на гликозилированный гемоглобин не реже 1 раза в квартал.

    Врачи выделяют еще одну форму гемоглобина — фетальный гемоглобин, отличающийся от нормального гемоглобина по строению и свойствам. Фетальный гемоглобин — это гемоглобин новорожденных, содержание в крови фетального гемоглобина ребенка достигает 80%. К 1 году жизни фетальный гемоглобин у детей начинает разрушаться и практически полностью заменяется на гемоглобин взрослых. Фетальный гемоглобин — норма у детей, но для взрослых его содержание — признак серьезных заболеваний. Определение гемоглобина новорожденных используется в диагностике заболеваний крови и онкологических заболеваний.

    Источник: http://www.bestreferat.ru/referat.html

    Гликированный гемоглобин реферат

    Новые возможности для диагностики,терапии и оценки рисков

    канд. биол. наук В.В.Вельков

    ЧТО ТАКОЕ ГЛИКОЗИЛИРОВАННЫЙ ГЕМОГЛОБИН?

    Белки, в том числе и гемоглобин, если их долго выдерживать в растворе, содержащем глюкозу, связываются с ней и, что принципиально, такое связывание происходит самопроизвольно – не энзиматически. Гликозилированный (или гликированный) гемоглобин (далее – HbA1c) образуется в результате такой медленной, неферментативной (неэнзиматической) реакции между гемоглобином А, содержащемся в эритроцитах, и глюкозой сыворотки крови.

    Скорость гликозилирования гемоглобина (а следовательно, его концентрация) определяется средним уровнем глюкозы, который существует на протяжении жизни эритроцита. Эритроциты, циркулирующие в крови, имеют разный возраст, поэтому для усредненной характеристики уровня связанной с ними глюкозы ориентируются на полупериод жизни эритроцитов – 60 суток. Есть, по крайней мере, три варианта гликозилированных гемоглобинов: НbA1a, HbA1b, HbA1c, но только вариант HbA1c количественно преобладает и дает более тесную корреляцию со степенью выраженности сахарного диабета. Повышение концентрации глюкозы в крови значительно увеличивает ее поступление в клетки за счет инсулиннезависимых механизмов. В результате глюкоза поступает в ткани в избытке и при этом неферментативно гликозилируются следующие белки: 1) гемоглобин; 2) белки мембран эритроцитов; 3) альбумин; 4) трансферрин; 5) аполипопротеины; 6) коллаген; 7) белки эндотелия; 8) белки хрусталика; 9) некоторые ферменты (алкогольдегидрогеназа) и ряд других белков. Гликозилирование – медленная реакция; в тканях здоровых людей обнаруживаются лишь небольшие количества гликозилированных белков, но у больных диабетом именно высокий уровень гликозилирования белков приводит к серьезным осложнениям. Степень гликозилирования разных белков неодинакова и в каждом случае зависит не столько от степени повышения концентрации глюкозы, сколько от времени жизни конкретного белка, т.е. от скорости его обновления. В медленно обменивающихся («долгоживущих») белках накапливается больше модифицированных аминогрупп, в короткоживущих – меньше.

    Естественно, что при присоединении глюкозы функции белка могут нарушаться из-за изменения заряда белковой молекулы, из-за нарушения ее конформации или из-за блокирования активного центра. Это и приводит к многочисленным осложнениям диабета. От того, какие именно белки и в какой степени гликозилированы и зависит, какие именно осложнения возникнут и насколько тяжелыми они будут. Кажется весьма перспективным, при гипергликемиях следовало бы измерять концентрации большого набора конкретных гликозилированных белков и, тем самым, оценивать степень риска возникновения и скорости развития соответствующих осложнений диабета. Однако такой специфический подход, пригодный для рутинной оценки индивидуальных рисков различных осложнений диабета, – дело будущего. В данный момент для обобщенных оценок таких рисков применяется измерение обобщенного показателя гипергликемии – концентрации HbA1c, но подробнее об этом – позже.

    ПОЧЕМУ ИЗМЕРЕНИЕ ГЛЮКОЗЫ В КРОВИ НЕДОСТАТОЧНО ДЛЯ ЭФФЕКТИВНОЙ ДИАГНОСТИКИ ДИАБЕТА И МОНИТОРИНГА ЕГО ТЕРАПИИ?

    Наглядный ответ на этот вопрос представлен на рис. 3. Какой вывод о реальной компенсации диабета можно сделать, если измерение концентрации глюкозы в крови состоялось, например, в момент ее максимума? Или в момент ее минимума?

    Действительно, измерение глюкозы в крови оценивает текущий (сиюминутный) уровень глюкозы, который может зависеть: 1) от приема (или неприема) пищи; 2) от ее состава, 3) от физических нагрузок и их интенсивности, 4) от эмоционального состояния пациента, 5) от времени суток и даже 6) от погодных условий. Очевидна высокая вероятность того, что определение текущего уровня глюкозы в крови не будет отражать действительную степень компенсации сахарного диабета, а это может привести либо к передозировке лечебных препаратов, либо к неоправданному уменьшению их количества. Ценность определения гликозилированного гемоглобина (HbA1c) в том, что он характеризует, как уже говорилось, средний уровень глюкозы в крови на протяжении длительного промежутка времени, то есть действительную степень компенсации сахарного диабета на протяжении последних 1–2 месяцев.

    Рис. 3. Динамика концентрации глюкозы в крови на протяжении 9 недель.

    Концентрация глюкозы изменяется между 7 и 12 ммоль/л. Уровень HbA1c в течение всего периода постоянен – 10%.

    Ранее для выявления сахарного диабета (далее – СД), как и для контроля степени его компенсации, рекомендовалось определение содержания глюкозы в крови натощак и перед каждым приемом пищи. Затем было установлено, что более четкая корреляция между уровнем глюкозы в крови, наличием сосудистых осложнений диабета и степенью их прогрессирования выявляется не показателями гликемии натощак, а степенью ее увеличения в период после приема пищи – постпрандиальная гипергликемия. Весьма существенно, что с ростом в мире заболеваемости диабетом показатели нормальных концентраций глюкозы постоянно снижались (см. табл. 1).

    Изменение критериев СД с 1993 по 2000 г.

    *DCCT – крупный исследовательский проект – Diabetes Control and Complications Trial.

    Полагается, что критерии диагностики СД и уровней его компенсации, соответствующие рекомендациям ВОЗ (2002 г.), необходимо и дальше «ужесточать». Это обусловлено исследованиями последних лет, которые показали, что частота, времяразвития поздних сосудистых осложнений СД и скорость их прогрессирования имеют прямую корреляцию со степенью компенсации СД, о которой уверенно можно судить только на основании измерений уровней HbA1c. Уровень HbA1с свидетельствует одновременно об уровне глюкозы натощак, о препрандиальном и постпрандиальном ее уровнях. В целом, определение НbА1с дает усредненное, интегрированное представление об уровне гликемии при всех формах диабета.

    Но этим ценность измерения НbА1с отнюдь не исчерпывается. НbА1с – это не только диагностический показатель, но и весьма достоверный предиктор целого спектра осложнений, как микрососудистых, так и макрососудистых. И чем лучше скомпенсирован диабет, о чем уверенно свидетельствовать может только уровень НbА1с, тем меньше риск развития таких осложнений диабета, как поражение глаз – ретинопатия, поражение почек – нефропатия, поражение периферических нервов и сосудов, ведущее к гангрене. В целом, уровень HbA1c показывает: 1) какой была концентрация глюкозы в предшествующие 4–8 недель, 2) какой была степень компенсации углеводного обмена на протяжении этого периода, 3) каков на данный момент риск развития осложнений диабета.

    Таким образом, стратегическая цель лечения СД – постоянное поддержание глюкозы в пределах нормы и тем самым предотвращение развития диабетических осложнений – может быть достигнута лишь при сочетанном определении как глюкозы в крови, так и концентрации HbA1c. Образно говоря, при терапии сахарного диабета «понижать» надо не глюкозу в крови, а гликозилированный гемоглобин!

    Или, строго говоря, при лечении диабета ориентироваться следует не на уровни глюкозы натощак, а на уровни HbA1c.

    ГЛИКОЗИЛИРОВАННЫЙ ГЕМОГЛОБИН – ПРЕДИКТОР ОСЛОЖНЕНИЙ САХАРНОГО ДИАБЕТА

    Большинство пациентов с СД умирают от сердечно-сосудистых осложнений. Диабетики в 4 раза чаще страдают ишемической болезнью сердца, чем пациенты без диабета (того же возраста), и в 2–3 раза чаще подвержены инсультам. Через 9 лет после постановки диагноза СД второго типа (далее СД II) у каждого пятого пациента развиваются макрососудистые осложнения, а у каждого десятого – микрососудистые.

    Более половины больных СД умирают от сердечно-сосудистых заболеваний. Даже сегодня СД все еще остается главной причиной слепоты и терминальных стадий почечных заболеваний. Нейропатии, вызванные диабетом, – основная причина нетравматических ампутаций конечностей (отметим, что гангрены развиваются не столько от нейропатии, сколько от сосудистых осложнений). В последние годы СД II становится главной причиной сердечно-сосудистых заболеваний. Широкомасштабные проспективные исследования четко показали: у лиц, страдающих диабетом второго типа, имеется четкая связь между уровнем гипергликемии и повышенным рисками как микрососудистых, так и макрососудистых осложнений (рис. 4). В популяции среди всех диабетических осложнений ретинопатии составляют 49%; нейропатии – 40%; нефропатии – 35%, сердечно-сосудистые заболевания – 43% (рис. 5).

    Рис. 4. Основные типы рисков осложнений сахарных диабетов

    Но можно ли оценить риск диабетических осложнений не в популяции лиц, страдающих диабетом, а у конкретного пациента?

    HbA1c – ПРЕДИКТОР ОБЩЕЙ СМЕРТНОСТИ

    В одном из недавних широкомасштабных исследований было изученопациента, страдающих СД. Оказалось, что практически все осложнения диабета были связаны с гипергликемией. Снижение уровня HbA1с на 1% было связано с уменьшением этих рисков на 21%. В частности, при снижении HbA1с на 1% смертность от диабета снижалась на 15–27%, смертность от инфарктов – на 8–21% и смертность от микроваскулярных осложнений – на 34–41%. Показательно, что зависимость этих рисков от уровней HbA1с имела плавный характер, пороговых значений концентрации HbA1с по отношению к указанным рискам замечено не было. В частности, не обнаружено пороговых значений HbA1с после которых резко возрастают риски прогрессирующей ретинопатии, повышенной секреции альбумина в моче, резкого утяжеления нефропатии. Нет и пороговых значений HbcA1, после которых резко повышается риск смерти от макроваскулярных заболеваний, …Беда подступает постепенно. Существенно, что связь между повышенными уровнями HbcA1 и указанными рисками является достоверной и после поправки на такие традиционныефакторы риска, как возраст, пол, систолическое кровяное давление, концентрации липидов, курение и альбуминурия. В целом, у мужчин и женщин в возрасте от 45 до 79 лет повышение уровня HbA1c на 1% связано с повышением риска общей смертности на 20–30%. Причем эта закономерность не зависела от наличия диабета.

    Более того, показано (с учетом поправки на другие факторы риска), что HbA1c – это также предиктор общей смертности пациентов с недиабетическими заболеваниями почек. Очевидно, что измерение уровней HbA1c может быть важным для стратификации популяции, согласно риску общей смертности. Такой вывод подтвердился и в недавнем исследовании 3710 японцев, выживших после атомной бомбардировки. Согласно уровням их HbA1c, эти лица были разделены на следующие группы:

    1) нормальный уровень HbA1с – от 5 до <6,0% (1 143 человека); 2) слегка повышенный, но все еще нормальный уровень HbA1c – от 5,5 до 6,0% (1 341 человек), 3) умеренно высокий уровень HbA1c – от 6,0 до <6,5% (589 человек), 4) высокий уровень HbA1c – от 6,5% (259 человек), 5) страдающие диабетом второго типа (378 человек). В течение наблюдений умерло 754 человека. Повышенный риск общей смертности и смертности от сердечно-сосудистых заболеваний наблюдался в группе со слегка высоким уровнем HbA1с – от 6,0 до 6,5%. Повышенная смертность от злокачественных опухолей была обнаружена в группе с высоким уровнем HbA1c – от 6,5% и у лиц, страдающих диабетом второго типа. Сделан вывод, что при уровнях HbA1c от 6% и выше повышается риск смертности. Полагается, что измерение концентрации HbA1c для оценки риска общей смертности должно проводиться также и у лиц, не страдающих диабетом.

    HbA1c – ПРЕДИКТОР ФАТАЛЬНЫХ И НЕФАТАЛЬНЫХ ИНФАРКТОВ МИОКАРДА

    Оказывается, что повышенные уровни HbAlc предсказывают сердечно-сосудистые риски у лиц, как страдающих диабетом, так и не имеющих его (рис. 6). Хотя, разумеется, у лиц, страдающих диабетом, эти риски значительно выше, чем у недиабетиков. Особо следует подчеркнуть, что повышение рисков инфарктов начинается уже с концентраций HbAlc, которые обычно считаются нормальными – 5,5%.

    Рис. 6. Относительные риски смертности от сердечно-сосудистых заболеваний в зависимости от повышенных уровней HbAlc. (ССЗ – сердечно-сосудистые заболевания, ИБС – ишемическая болезнь сердца)

    Причина этого пока не ясна. Что же касается рисков микрососудистых осложнений, то при достижении значений HbAlc выше 9% они возрастают быстрее, чем сердечно-сосудистые риски (рис. 7).

    Рис. 7. Связь инфарктов миокарда и микрососудистых заболеваний с уровнями HbAlc

    В общем, повышение уровня HbA1с на 1% связано с повышением риска фатальных и нефатальных инфарктов на 14% (рис. 8).

    Рис. 8. Зависимость риска фатальных и нефатальных инфарктов миокарда от уровней HbA1с

    В 2004 г. были обобщены результаты 10 различных исследований (мета-анализ), в которых представлены данные историй болезни окололиц с СД II. Было выявлено, что повышение HbA1c на 1% связано с повышением риска сердечных приступов или инсультов на 18%. Однако риск заболеваний периферических сосудов при повышении уровня HbA1c на 1% повышался на 28%. Аналогичные результаты были получены и при исследовании лиц с СД I типа, но эти данные оказались статистически недостоверны. В целом, данные о связи между повышенными уровнями глюкозы в крови и сердечно- сосудистыми рисками находят все большее подтверждение. Существенно, что такаясвязь наблюдается даже при тех уровнях глюкозы, которые ниже критических значений, при которых принято диагностировать диабет.

    В недавнем исследовании (2004 г.) изучалась связь между уровнем HbA1c и частотой сердечно-сосудистых событий в течение 6 лет умужчин иженщин (возраст 45–79 лет), как страдающих, так и не страдающих диабетом. За эти 6 лет зарегистрировано 806 сердечно-сосудистых событий и 521 летальный исход. У мужчин повышение уровня HbA1c на 1% связано с увеличением риска сердечно-сосудистых событий на 21% и риска общей смертности – на 22% и на 28% у женщин (после поправки на традиционные факторы сердечно-сосудистого риска). В отличие от уровня HbA1c наличие диабета не являлось достоверным предиктором сердечно-сосудистых событий или смерти. Даже после исключения из анализа больных с уровнем HbA1c не ниже 7% или лиц с уже имеющейся сердечно-сосудистой патологией увеличение уровня HbA1c на 1% сочеталось с повышением риска ишемической болезни сердца на 40%, сердечно-сосудистых событий – на 16%, риска общей смертности – на 26%. Согласно устоявшимся представлениям об атеросклерозе, одна из ведущих причин его возникновения и развития – патологические изменения метаболизма холестеринов, связанных с липопротеинами низкой и высокой плотности, и триглицеридов. Поэтому вопрос, есть ли связь между уровнями HbA1c и концентрациями холестеринов, связанных с липидами низкой и высокой плотности, весьма закономерен. Ответ, который был на него получен, впечатляет.

    Изучалосьлиц с диабетом. Определялась корреляция между уровнями HbA1c, сердечно-сосудистыми заболеваниями (ССЗ), толщиной интима / медиа сонной артерии и традиционными кардиорисками. Оказалось, изменения концентраций Х-ЛПНП и Х-ЛПВП и триглицеридов действительно тесно связаны с изменениями HbA1c.Обнаружена также связь между увеличением толщины интима / медиа и уровнями HbA1c. После поправки на традиционные факторы кардиорисков стало ясным, что связь между изменениями концентраций HbA1c и указанными показателями рисков сердечно-сосудистых заболеваний имеет линейный характер. Принципиально, чтокардиориски начинают возрастать даже при концентрациях HbA1c, меньших, чем 7%, а именно этот уровень HbA1c считается нормальным при терапии гликемий. Однако для лиц, не страдающих диабетом, зависимость между уровнями HbA1c и кардиорисками оказалась более сложной. При уровнях HbA1c ниже 4,6% четкой корреляции между HbA1c и кардиорисками нет. Но уже при уровне 4,6% и выше наблюдается повышение кардиорисков даже после поправки на другие факторы риска ССЗ. Авторы делают парадоксальный вывод: у лиц, не страдающих диабетом, так называемые «нормальные» уровни HbA1c (находящиеся между 4,6 и 6,0%) связаны с рисками сердечно-сосудистых заболеваний. Означает ли это, что для лиц, не страдающих диабетом, «нормальные значения» концентрации HbA1c должны находиться ниже 4,6%? Ответа пока нет. Таким образом, HbA1c – это независимый фактор риска сердечно-сосудистых заболеваний у лиц с диагностированным или недиагностированным диабетом. Следовательно, тест на HbA1c должен быть добавлен к тестам, оценивающим сердечно-сосудистые риски. Однако повышенные уровни HbA1c – это не только указание на повышенный риска ССЗ, но и показатель, позволяющий судить о количестве коронарных сосудов, пораженных стенозом. У больных СД II, страдающих сердечной болью, проводили ангиографию и одновременно определяли уровни HbA1c. Оказалось, что при Hb A1c – 6,68% стенозы в сосудах не обнаруживались, при Hb A1c – 8,0% поражен один сосуд, при Hb A1c – 8,83% – два сосуда, а при Hb A1c – 10,40% стенозом были поражены 3–4 сосуда. Авторы делают вывод: «Чем выше уровень HbA1c – тем больше поврежденных коронарных сосудов». Действительно, атеросклероз – первая причина смертности от диабета второго типа, риск развития сердечно-сосудистых заболеваний у диабетиков в 2 – 4 раза выше, чем у недиабетиков. Каким образом гипергликемия приводит к атеросклерозу? Одна из главных причин атеросклероза – повышенные уровни Х-Л ПНП. Тогда закономерно ожидать, что уровень Х-ЛПНП в плазме диабетиков будет выше, чем у недиабетиков. Увы, это не так. В реальности, концентрации Х-ЛПНП в плазме диабетиков такие же, как в норме. Тем не менее, терапия статинами, снижающими уровень холестерина, снижала у таких больных сердечно-сосудистые риски даже в тех случаях, когда уровни холестерина были нормальными и/или когда у таких пациентов не было предшествующих сердечно-сосудистых событий. Можно ли попытаться объяснить этот парадокс? Как уже говорилось, неэнзиматическому гликозилированию могут подвергаться любые белки. И аполипопротеин В – основной белок «атерогенного» Х-ЛПНП в том числе? Именно так. Действительно, оказалось, что Апо В у лиц, страдающих диабетом 2 типа, гликозилирован в большей степени, чем у недиабетиков. Более того, частицы Х-ЛПНП, выделенные из плазмы диабетиков, оказались более чувствительны к окислению, что значительно повышало их атерогенный потенциал. Уже давно было известно, что гликозилирование Х-ЛПНП значительно замедляет скорость катаболизма этих крайне атерогенных частиц. Отметим, что при повышенной концентрации глюкозы гликозилируется большое количество и других белков, как свободно циркулирующих в крови, так и связанных с различными компонентами сосудистой системы. Такие гликозилированные белки могут приводить к широкому спектру различных патологий, и можно надеяться, что в будущем будут разработаны методы определения конкретных гликозилированных белков и будет установлена их связь с различными типами патологий. Гликозилированные гемоглобин и Х-ЛПНП – это только «верхушка айсберга», образованного избыточными концентрациями глюкозы в крови.

    В общем, у диабетиков Апо В-100 гликозилирован в два раза интенсивнее, чем у недиабетиков, и, таким образом, гипергликемия связана с повышенным гликозилированием Х-ЛПНП и повышенной интенсивностью его окисления, что делает Х-ЛПНП более атерогенным. Однако повышенные уровни HbA1с связаны не только с повышением атерогенности Х-ЛПНП. Показано, что повышение HbA1с и продолжительность диабета положительно связаны с повышенными триглицеридами, что согласуется с тем, что больные с нарушенной регуляцией уровня глюкозы имеют также и высокий уровень триглицеридов – феномен, который часто связан с инсулинрезистентностью. Итак, повышенные концентрации HbA1с – это также указание: 1) на высокую вероятность того, что у пациента высокий уровень гликозилированного Х-ЛПНП, подверженного интенсивному окислению и поэтому более атерогенного, и 2) на высокие уровни триглицеридов.

    ГЛИКОЗИЛИРОВАННЫЙ ГЕМОГЛОБИН –ПРЕДИКТОР ИШЕМИЧЕСКИХ ИНСУЛЬТОВ

    То, что у лиц, страдающих диабетом, повышен риск ишемических инсультов – факт хорошо известный. Действительно, недавно была убедительно показана связь между инсультами и уровнями HbA1c у лиц, страдающих СД II. Оказалось, что у лиц, у которых произошли фатальные инсульты, HbA1c был более высокий, чем у тех, кто пережил инсульт. Является ли их причиной длительная гипергликемия? Есть ли связь между уровнями HbA1c и уровнями риска инсультов? Для ответа на эти вопросы концентрации HbA1c измеряли у 167 лиц, перенесших инсульт, у 680 лиц, не имевших инсульта и диабета, и улиц, страдавших диабетов, 89 из которых перенесли инсульт. Была обнаружена четкая взаимосвязь между повышенными уровнями HbA1c и повышенными рисками инсультов в последующие 8–10 лет. Авторы убеждены, что хронически повышенная гликемия может принимать участие в возникновении и развитии инсультов как у лиц, страдающих диабетом, так и у лиц, его не имеющих. Разумеется, у диабетиков риск инсультов гораздо выше, чем у тех, кто диабета не имеет. Наибольший риск имеют лица, у которых HbA1c выше 6,8%, что в 4 раза превышает риск инсультов у лиц без диабета, у которых уровни HbA1с ниже 4,7%. Существенно, что данное повышение рисков инсультов сходно с повышением риска сердечно-сосудистых событий у лиц с повышенными концентрациями HbA1с. Особо отметим, что при повышении уровней HbA1с и соответствующими повышениями кардиорисков и рисков инсультов пограничных значений концентраций HbA1с, которые бы отделяли риски, связанные с диабетом, от рисков, с диабетом не связанных, обнаружено не было. По мнению авторов, взаимосвязь между повышенными кардиорисками и повышенным HbA1с обусловлена скорее гликемическим статусом, нежели диагностированным диабетом как таковым.

    В целом, риск ишемических инсультов возрастает с повышением концентрации HbA1с как у лиц, страдающих диабетом, так и у недиабетиков: у лиц, страдающих диабетом, риск инсультов в 4 раза выше, чем у недиабетиков.

    Следовательно повышенный уровень HbA1с – это независимый фактор риска инсульта как у лиц, страдающих диабетом, так и у недиабетиков.

    HbA1c – ПРЕДИКТОР ОСЛОЖНЕНИЙ ПЕРИФЕРИЧЕСКОЙ СОСУДИСТОЙ СИСТЕМЫ

    Гликозилированный гемоглобин не просто метаболически нейтральный индикатор уровня гипергликемии. В результате гликозилирования гемоглобин превращается в причину весьма опасных патологий. Обладая повышенным сродством к кислороду, HbA1c вызывает снижение поступления кислорода в ткани. В итоге происходят: 1) гипоксия периферических тканей, 2) частичное шунтирование кровотока и 3) нарушение метаболизма в различных тканях. Но гликозилируется, как уже говорилось, не только гемоглобин.

    Гликированный альбумин имеет нарушенную способность транспортировать билирубин, жирные кислоты, некоторые лекарственные препараты, в т.ч. и гипогликемические пероральные препараты. Также происходит накопление гликозилированного альбумина в базальных мембранах капилляров – причем степень накопления гликозилированного альбумина в базальных мембранах пропорциональна степени его гликозилирования и, следовательно, тяжести гипергликемии. Особое сродство имеет гликозилированный альбумин к капиллярам почечных клубочков.

    Гликозилирование коллагена ведет в итоге, к гликозилированию базальных мембран, что снижает трансмембранный транспорт. Наиболее опасным является гликозилирование мембран клубочков почек. Гликозилированный коллаген приобретает способность связываться с гликозилированным и негликозилированным альбумином и с иммуноглобулином G, что вызывает избыточное образование иммунных комплексов. Присоединение альбумина повышает толщину базальных мембран, а иммуноглобулин образует повреждающий мембрану комплементный комплекс. Более того, повышение уровня гликозилированного коллагена ведет к уменьшению его растворимости и эластичности, а также к снижению его чувствительности к протеолитическим ферментам. Это вызывает преждевременное старение и нарушение функции соответствующей ткани или органа, стимулирует образование контрактур, часто сопутствующих сахарному диабету. В целом, при сахарном диабете гликозилированию подвергаются практически все белки и в результате:

    • гликозилированный гемоглобин приобретает повышенное сродство к кислороду, что ведет к гипоксии периферических тканей;
    • гликозилированные белки хрусталика ведут к нарушению светопропускания;
    • гликозилирование миелина ведет к нарушению проведения импульсов по нервным волокнам и к развитию нейропатии;
    • гликозилированные белки базальных мембран вызывают нарушения почечной фильтрации и, в итоге, нефропатию почечных клубочков;
    • гликозилированный коллаген повреждает строму органов и тканей, нарушает транскапиллярный обмен, ведет к нарушению гидратации соединительной ткани («морщинистая кожа»);
    • гликозилированные белки коронарных сосудов нарушают кровоснабжение миокарда;
    • гликозилированный альбумин ведет к нарушению транспортной функции, к патологии почечных клубочков;
    • гликозирование аполипопротеина В приводит к атеросклерозу, ишемической болезни сердца, инфарктам и инсультам.

    Повышенные уровни HbA1с предсказывают, по крайней мере, 4 типа микрососудистых осложнений (рис. 9).

    Сравнительно недавно показано, в частности, что при СД II (изученолиц) повышение уровня HbA1c было весьма сильно связано с риском заболеваний периферической сосудистой системы и, что важно, независимо от таких факторов риска, как повышенное систолическое давление, пониженный уровень Х-ЛПВП, курение, предшествующие сердечно-сосудистые заболевания, дистальная нейропатия и ретинопатия. Повышение HbA1c на 1% было связано с повышением риска заболеваний периферической сосудистой системы на 28%. А согласно данным трех независимых широкомасштабных исследований, снижение концентрации HbA1c на 1% приводило к значительному снижению риска ретинопатий, нефропатий, нейропатий и сердечно-сосудистых заболеваний (табл. 2).

    Снижение рисков микрососудистых и макрососудистых осложнений диабета при снижении концентрации HbA1c на 1%

    Источник: http://www.eurolab.md/library/pamyat-o-sakhare-v-krovi-glikozilirovannyjj-gemoglobin/